Ruthenium

Ruthenium
  [Kr] 4d7 5s1
102 Ru
44
 
               
               
                                   
                                   
                                                               
                                                               
↓ Periodická tabulka ↓
Obecné
Název, značka, číslo Ruthenium, Ru, 44
Cizojazyčné názvy lat. Ruthenium
Skupina, perioda, blok 8. skupina, 5. perioda, blok d
Chemická skupina Přechodné kovy
Koncentrace v zemské kůře 0,001 ppm
Vzhled Stříbrná látka s kovovým leskem
Identifikace
Registrační číslo CAS
Atomové vlastnosti
Relativní atomová hmotnost 101,07
Atomový poloměr 134 pm pm
Kovalentní poloměr 146±7 pm
Iontový poloměr 67 pm
Elektronová konfigurace [Kr] 4d7 5s1
Oxidační čísla VIII, VII, VI, IV, III, II, -II
Elektronegativita (Paulingova stupnice) 2,2
Ionizační energie
První 710,2 kJ/mol
Druhá 1620 kJ/mol
Třetí 2747 kJ/mol
Látkové vlastnosti
Krystalografická soustava Krychlová
Mechanické vlastnosti
Hustota 12,41 g/cm3
Skupenství Pevné
Tvrdost 6,5
Rychlost zvuku 5970 m/s
Termické vlastnosti
Tepelná vodivost 117 W⋅m−1⋅K−1
Termodynamické vlastnosti
Teplota tání 2334 °C (2 607,15 K)
Teplota varu 4150 °C (4 423,15 K)
Skupenské teplo tání 38,59 kJ/mol
Skupenské teplo varu 591,6 kJ/mol
Měrná tepelná kapacita 24,06 Jmol−1K−1
Elektromagnetické vlastnosti
Elektrická vodivost 13,7×106 S/m
Měrný elektrický odpor 71 nΩ·m (pro 0 °C)
Magnetické chování paramegnetický[pozn. 1]
Bezpečnost
GHS02 – hořlavé látky
GHS02
[2]
Varování[2]
R-věty R11
S-věty S16, S22, S24/25
Izotopy
I V (%) S T1/2 Z E (MeV) P
96Ru 5,52% je stabilní s 52 neutrony
97Ru umělý 2,9 dní ε 0,215 97Tc

γ 0,324 -
98Ru 1,88% je stabilní s 54 neutrony
99Ru 12,7% je stabilní s 55 neutrony
100Ru 12,6 je stabilní s 56 neutrony
101Ru 17,0 je stabilní s 57 neutrony
102Ru 31,6% je stabilní s 58 neutrony
103Ru umělý 39,26 dní β 0,226 103Rh

γ 0,497 -
104Ru 18,7% je stabilní s 59 neutrony
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).
Fe
Technecium Ru Rhodium

Os

Ruthenium (chemická značka Ru, latinsky Ruthenium) je drahý kov šedivě bílé barvy.

Chemické vlastnosti a výskyt

Ruthenium bylo objeveno roku 1844 v sibiřské platinové rudě ruským chemikem baltskoněmeckého původu Karlem Ernstem Clausem. Prvek byl pojmenován Clausem na počest jeho vlasti – Ruska a samotný název vychází z tehdejšího latinského názvu Ruska.[3] Je to ušlechtilý, poměrně tvrdý, i když křehký, kov, elektricky i tepelně středně dobře vodivý. Společně s rhodiem a palladiem patří do triády lehkých platinových kovů. V přírodě doprovází ostatní platinové kovy, hlavní naleziště jsou na Urale a v Americe.

Ruthenium je jedním ze tří prvků, které mohou (za běžných podmínek) vytvořit oxid s prvkem v nejvyšším oxidačním čísle (patří k nim ještě osmium a xenon).

Využití

Menší množství ruthenia bývá někdy legováno do slitin s platinou a palladiem pro zvýšení jejich tvrdosti a mechanické odolnosti. Přídavek malého množství ruthenia do titanových slitin zvyšuje podstatným způsobem jejich odolnost proti korozi. Slitina platiny s přídavkem 5% ruthenia je používána pro výrobu luxusních náramkových hodinek s maximální odolností vůči mechanickému nebo chemickému poškození.

Katalyzátory na bázi oxidu ruthenia se používají při odstraňování sulfanu z ropy a ropných produktů.

Farmaceutickým průmyslem jsou intenzivně zkoumány komplexní sloučeniny ruthenia, které se mohou stát základem účinných cytostatik.[4]

Roku 2005 dostal Robert Grubbs Nobelovu cenu za chemii za objev nové katalytické reakce založené na rutheniu, která se jmenuje metateze olefinů.[5]

Rutheniové komplexy jsou absorpcí záření (377 až 430 nm) schopny katalyzovat rozklad vody na směs vodíku a kyslíku (objeveno Davidem G. Whittenem, 1973–1980 profesorem University of North Carolina). Rutheniový komplex je donorem i akceptorem elektronu a v této dvojstrannosti spočívá jeho význam pro rozklad vody světlem.[6]

Sloučeniny

[Ru(bpy)3]Cl2

Ruthenium je za normálních podmínek velice nereaktivní kov. Jelikož se v Beketovově řadě kovů nachází vpravo (je ušlechtilý kov), nereaguje s mnoha kyselinami, jako je kyselina chlorovodíková a podobně. Nereaguje však ani s kyselinami, které reagují i s ušlechtilými kovy, tj.: kyselina sírová či kyselina dusičná. V lučavce královské se nerozpouští ani za tepla. Rovněž tak nereaguje ani se zásaditými látkami, jako je hydroxid sodný nebo amoniak.

Sloučeniny tohoto kovu lze získávat elektrolyticky. Jedna z mála látek, které s kovovým rutheniem reagují, je směs chlornanu sodného a hydroxidu sodného. Probíhá řada autokatalyzovaných (katalyzátorem je samotné ruthenium) reakcí, při níž vzniká oxid rutheničelý a několik dalších látek. Oxid rutheničelý se následně využívá na výrobu chloridu ruthenitého, a ten se používá na organokovové syntézy.
Někdy je používána dražší metoda, reakce s hydroxidem a peroxidem sodným.

Za zvýšené teploty se však ruthenium stává reaktivní, reaguje s kyslíkem, fluorem, chlórem, a dalšími.

Sloučeniny ruthenia

  • Chlorid ruthenitý – RuCl3 – hnědočerná, krystalická látka, rozpustná ve vodě. Používá se na výrobu organoruthenitých sloučenin.
  • Oxid rutheničitý – RuO2 – tmavě modrá, krystalická látka, nerozpustná ve vodě. Používá se jako katalyzátor a vrstvičkou oxidu rutheničitého se potahují elektrody.
  • Oxid rutheničelý – RuO4 – bezbarvá, jedovatá látka, která velice snadno taje (tt=25,6 °C). Používá se jako katalyzátor.
  • Fluorid rutheniový – RuF6 – tmavě hnědá, krystalická látka, rozpustná ve vodě. Používá se na výrobu organorutheniových sloučenin.
  • Kyselina rutheniová – H2RuO4 – látka bez praktického využití. Vytváří však soli – ruthenany.
  • Kyselina ruthenistá – HRuO4 – látka bez praktického využití. Vytváří však soli – ruthenistany.

Odkazy

Poznámky

  1. Byl připraven feromagnetický speciální materiál.[1]

Reference

  1. Nový feromagnet. Akademon, 4. červen 2018. Dostupné online
  2. a b Ruthenium. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-24]. Dostupné online. (anglicky) 
  3. LATIN AND COMMON NAMES USED IN THE TEXT AND THEIR COMMON AND LATIN NAME EQUIVALENTS. [s.l.]: Elsevier Dostupné online. ISBN 978-0-408-10705-1. S. 509–512. 
  4. SOJKA, Martin; GAMEZ, Patrick. Exploring the toxicity of mononuclear piano-stool Ru(II) anticancer agents: A comprehensive literature review. Coordination Chemistry Reviews. 2025-11, roč. 543, s. 216902. Dostupné online [cit. 2025-07-22]. doi:10.1016/j.ccr.2025.216902. (anglicky) 
  5. The Nobel Prize in Chemistry 2005. NobelPrize.org [online]. [cit. 2024-08-18]. Dostupné online. (anglicky) 
  6. KLECZEK, Josip. Sluneční energie. Praha: SNTL – Státní nakladatelství technické literatury, 1981. 192 s. 

Literatura

  • Cotton F.A., Wilkinson J. Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z. Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Externí odkazy

  • Obrázky, zvuky či videa k tématu ruthenium na Wikimedia Commons
  • Slovníkové heslo ruthenium ve Wikislovníku

Zdroj