Hexafluorid uranu

Fluorid uranový
Obecné
Systematický název Fluorid uranový
Triviální název hex
Anglický název Uranium hexafluoride
Německý název Uran(VI)-fluorid
Sumární vzorec UF6
Vzhled bílé krystalky nebo prášek
Identifikace
Registrační číslo CAS 7783-81-5
PubChem 24560
ChEBI 30235
UN kód 2978 (<1 % 235U)
2977 (>1 % 235U)
Číslo RTECS YR4720000
Vlastnosti
Molární hmotnost 352,017 g/mol
Teplota tání 64,1 °C (tlak)
Teplota sublimace 56,5 °C
Hustota 4,68 g/cm³ (21 °C)
Kritická teplota Tk 230,2 °C
Kritický tlak pk 4 610 kPa
Rozpustnost ve vodě reaguje
Rozpustnost v polárních
rozpouštědlech
alkoholy (reaguje)
Rozpustnost v nepolárních
rozpouštědlech
tetrachlormethan
Měrná magnetická susceptibilita 1,535×10−6cm3g−1
Ionizační energie 17,7 eV (tlak)
Struktura
Krystalová struktura kosočtverečná
Hrana krystalové mřížky a= 990 pm
b= 896,2 pm
c= 520,7 pm
Tvar molekuly čtyřboká bipyramida
Dipólový moment 0 Cm
Termodynamické vlastnosti
Standardní slučovací entalpie ΔHf° −2 188 kJ/mol
Entalpie sublimace ΔHsub 140,3 J/g
Standardní molární entropie S° 227,8 JK−1mol−1
Standardní slučovací Gibbsova energie ΔGf° −2 053,5 kJ/mol
Izobarické měrné teplo cp 0,473 6 JK−1g−1
Bezpečnost
Vysoce toxický
Vysoce toxický (T+)
Nebezpečný pro životní prostředí
Nebezpečný pro životní prostředí (N)
R-věty R26/28, R33, R51/53
S-věty (S1/2), S20/21, S45, S61
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).

Některá data mohou pocházet z datové položky.

Fluorid uranový (UF6), označovaný v jaderném průmyslu jako „hex“, je sloučenina používaná v procesu obohacování uranu, ve kterém se vyrábí palivo pro jaderné reaktory a jaderné zbraně.[1]

Chemické vlastnosti

Za standardní teploty a tlaku vytváří bílé krystalky, je vysoce toxický, snadno reaguje s vodou a způsobuje korozi většině kovů. Slabě reaguje s hliníkem, přičemž vytváří slabou vrstvu AlF3, která odolává dalším reakcím.[1]

Reakcí s chloridem hlinitým poskytuje chlorid uranový.[2]

Výroba

Rozemletá uranová ruda – U3O8 – je rozpustná v kyselině dusičné. Tím vytváří uranylový nitrát UO2(NO3)2. Čistý uranylový nitrát se získává extrakcí. Přidáním amoniaku vzniká (NH4)2U2O7. Ten redukcí za pomoci vodíku poskytuje UO2, který je dále přeměněn přidáním kyseliny fluorovodíkové (HF) na fluorid uraničitý UF4. Oxidací s fluorem konečně vzniká UF6.[1]

Použití

Aplikace v jaderném palivovém cyklu

Fluorid uranový se užívá v obou metodách obohacování uranu – v plynné difúzi a v odstředivce plynu, protože má trojný bod na 64 °C (147 °F, 337 K) a jemně vyšším tlaku než je atmosférický.[2]

Plynná difúze potřebuje asi šedesátkrát více energie než proces v plynné odstředivce, přesto jsou to asi 4 % energie, která může být vyrobena výsledným obohaceným uranem.[3][1]

Tato sloučenina se používá v pokročilé znovuzpracovací metodě vyvinuté v České republice. V tomto procesu je oxid jaderného paliva ošetřen plynným fluorem za vzniku směsice fluoridů. Směsice je poté destilována, aby se oddělily jednotlivé druhy materiálu.[1]

Odkazy

Reference

  1. a b c d e ŠTAMBERG, Karel a České VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ FAKULTA. Technologie jaderných paliv II. 3. vydání. vyd. V Praze: České vysoké učení technické, 2017. ISBN 9788001060773;ISBN 8001060772;
  2. a b GREENWOOD, N.N.; EARNSHAW, A. Chemie prvků. 1. vyd. Praha: Informatorium, 1993. 1635 s. ISBN 80-85427-38-9. S. 1574. 
  3. VILLANI, S. Uranium enrichment. Berlin: Springer-Verlag, 1979.

Literatura

  • VOHLÍDAL, Jiří; ŠTULÍK, Karel; JULÁK, Alois. Chemické a analytické tabulky. 1. vyd. Praha: Grada Publishing, 1999. ISBN 80-7169-855-5. 

Externí odkazy

Zdroj