Riemannův (Riemannův-Christoffelův) tenzor křivosti je geometrický objekt, který umožní odlišit plochý prostoročas od zakřiveného prostoročasu. Jeho odvození spočívá v myšlence paralelního přenosu vektoru. Riemannův tenzor křivosti lze použít k vyjádření křivosti libovolné variety s afinní konexí. Riemannův tenzor křivosti lze považovat z míru nekomutativnosti kovariantních derivací. Zakřivením prostoru se rozumí odchylka jeho metriky od metriky eukleidovského prostoru.
Riemannův tenzor lze vyjádřit pomocí afinních konexí a kovariantních derivací jako:
![{\displaystyle R(u,v)w=\nabla _{u}\nabla _{v}w-\nabla _{v}\nabla _{u}w-\nabla _{[u,v]}w}](https://wikimedia.org/api/rest_v1/media/math/render/svg/42d5cd4ea32c6a28b5c3b5221977ecfae559a250)
Algebraické vlastnosti Rienmannova tenzoru
Zdroj
Poslední aktualizace obsahu: 2024-03-25 18:05:04
Zdroj: Wikipedia (autoři článku Riemannův tenzor)
Licence textu: CC-BY-SA-3.0 Unported
Tento článek byl automaticky přejat z Wikipedie. Na obrázcích nebyly provedeny žádné změny. Obrázky se zobrazují ve zmenšené velikosti (jako miniatury). Kliknutím na obrázek získáte další informace o autorovi a licenci. Byly změněny prvky designu, odstraněny některé odkazy specifické pro Wikipedii (např. odkazy na Editaci a nebo na neexistující hesla) a provedena optimalizace pro rychlé načítání.