Kramersovy–Kronigovy relace umožňují spočítat reálnou část odezvy lineárního pasivního systému, známe-li imaginární části odezvy při všech frekvencích (nebo naopak určit imaginární část ze znalosti části reálné). Při analýze optických konstant hrají důležitou roli a jsou hojně využívány, protože platí např. pro elektrickou vodivost σ (vystupující v ohmově zákoně j(ω)=σ(ω)E(ω).
Abychom mohli Kramers–Kronigovu analýzu provést, musí funkce odezvy α(ω)=α1(ω)+iα2(ω) splňovat:
- Póly α(ω) jsou všechny pod reálnou osou
- Při integraci přes nekonečně velkou polokružnici v horní polorovině komplexní roviny, je integrál z α(ω)/ω roven nule
- Pro
je α1(ω) sudá a α2(ω) lichá
Potom platí:

a

značí hlavní hodnotu integrálu.
Zdroj
Poslední aktualizace obsahu: 2024-04-10 09:02:58
Zdroj: Wikipedia (autoři článku Kramersovy-Kronigovy relace)
Licence textu: CC-BY-SA-3.0 Unported
Tento článek byl automaticky přejat z Wikipedie. Na obrázcích nebyly provedeny žádné změny. Obrázky se zobrazují ve zmenšené velikosti (jako miniatury). Kliknutím na obrázek získáte další informace o autorovi a licenci. Byly změněny prvky designu, odstraněny některé odkazy specifické pro Wikipedii (např. odkazy na Editaci a nebo na neexistující hesla) a provedena optimalizace pro rychlé načítání.