Normála daného n−1 dimenzionálníhopodprostoru v n-dimenzionálním prostoru je přímkakolmá na daný podprostor. Vektor určující směr normály se nazývá normálový vektor. V rovinném případě je to vektor kolmý na přímku, v prostorovém případě je to vektor kolmý na rovinu.
Obecněji lze v jednotlivých bodech určovat i normály jiných spojitých n−1 rozměrných útvarů – tzv. nadploch. Například v rovině ke křivkám nebo v prostoru k plochám. Normála je pak normálou tečného podprostoru v daném bodě a určuje orientaci nadplochy.
Lze také určovat normály k útvarům nižší dimenze, např. k prostorové křivce. V takovém případě však normála není určena jednoznačně. Všechny normály v daném bodě pak tvoří normálový prostor, např. v případě prostorové křivky tvoří všechny normály normálovou rovinu.
Normála plochy
Normála k ploše v bodě je shodná s normálou k rovině tečné k dané ploše ve stejném bodě.
Je-li rovina dána rovnicí, potom je její normálový vektorn roven .
Hlavní (první) normálou křivky se nazývá přímka, která je její normálou v daném bodě a jejíž směr je určen vektorem .
Jednotkový vektor, který má stejný směr jako vektor , se nazývá jednotkový vektor hlavní (první) normály. Hlavní normála je definována pokud v daném bodě křivky platí .
Jednotkový vektor hlavní normály lze pomocí Frenetových vzorců vyjádřit jako
Tento článek byl automaticky přejat z Wikipedie. Na obrázcích nebyly provedeny žádné změny. Obrázky se zobrazují ve zmenšené velikosti (jako miniatury). Kliknutím na obrázek získáte další informace o autorovi a licenci. Byly změněny prvky designu, odstraněny některé odkazy specifické pro Wikipedii (např. odkazy na Editaci a nebo na neexistující hesla) a provedena optimalizace pro rychlé načítání.