Eulerův vzorec pro komplexní čísla lze v integrálním počtu použít pro vyhodnocení integrálů, které obsahují goniometrické funkce. Použitím Eulerova vzorce můžeme zapsat libovolnou trigonometrickou funkci jako komplexní exponenciální funkci obsahující
a
a tu pak integrovat. Tato technika je často jednodušší a rychlejší než použití trigonometrických identit nebo integrace per partes, a je dostatečně silná pro integraci libovolné racionální funkce obsahující trigonometrické funkce.
Eulerův vzorec
Eulerův vzorec:[1]

Substitucí
za
dostaneme rovnici

protože funkce kosinus je sudá funkce a sinus lichá. Z těchto dvou rovnic lze vyjádřit sinus a kosinus:

Příklady
První příklad
Uvažujme integrál

Standardní postup řešení tohoto integrálu je použít vzorec pro poloviční úhel pro zjednodušení integrandu. Místo toho můžeme použít Eulerovu identitu:
![{\displaystyle {\begin{aligned}\int \cos ^{2}x\,dx\,&=\,\int \left({\frac {e^{ix}+e^{-ix}}{2}}\right)^{2}dx\\[6pt]&=\,{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/477bcd8b7e0424bbab7594999c9a5157a119d1f4)
Nyní je možné se vrátit zpět k reálným číslům použitím vzorce e2ix + e−2ix = 2 cos 2x. Případně můžeme integrovat komplexní exponenciály a k trigonometrickým funkcím se již nevracet:
![{\displaystyle {\begin{aligned}{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx&={\frac {1}{4}}\left({\frac {e^{2ix}}{2i}}+2x-{\frac {e^{-2ix}}{2i}}\right)+C\\[6pt]&={\frac {1}{4}}\left(2x+\sin 2x\right)+C.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/094b4102f3fcb40250e8417ebff895de2aed2b46)
Druhý příklad
Uvažujme integrál

Řešení tohoto integrálu použitím trigonometrických identit je poměrně komplikované, ale při použití Eulerovy identity je docela jednoduché:
![{\displaystyle {\begin{aligned}\int \sin ^{2}x\cos 4x\,dx&=\int \left({\frac {e^{ix}-e^{-ix}}{2i}}\right)^{2}\left({\frac {e^{4ix}+e^{-4ix}}{2}}\right)dx\\[6pt]&=-{\frac {1}{8}}\int \left(e^{2ix}-2+e^{-2ix}\right)\left(e^{4ix}+e^{-4ix}\right)dx\\[6pt]&=-{\frac {1}{8}}\int \left(e^{6ix}-2e^{4ix}+e^{2ix}+e^{-2ix}-2e^{-4ix}+e^{-6ix}\right)dx.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/803fea23145359a202cb5de0ea639ddbfbc77b0f)
Nyní můžeme buď integrovat přímo nebo můžeme nejdřív provést substituci výrazu 2 cos 6x − 4 cos 4x + 2 cos 2x.
Obě metody dávají

Použití reálných částí
Kromě přímého využití Eulerovy identity lze často vhodně využít reálné části komplexních výrazů. Pokud máme například integrál

Protože cos x je reálná část eix, víme, že

Integrál na pravé straně lze snadno vypočítat:

Odtud postupně dostaneme
![{\displaystyle {\begin{aligned}\int e^{x}\cos x\,dx&=\operatorname {Re} \left({\frac {e^{(1+i)x}}{1+i}}\right)+C\\[6pt]&=e^{x}\operatorname {Re} \left({\frac {e^{ix}}{1+i}}\right)+C\\[6pt]&=e^{x}\operatorname {Re} \left({\frac {e^{ix}(1-i)}{2}}\right)+C\\[6pt]&=e^{x}{\frac {\cos x+\sin x}{2}}+C.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65e9c7fbcba2dfcd2ca6dab6894ec6bb9e21f128)
Zlomky
Obecně lze tuto techniku použít pro vyhodnocení libovolného zlomku, který obsahuje trigonometrické funkce. Například při řešení integrálu

dostaneme použitím Eulerovy identity

Pokud nyní provedeme substituci u = eix, výsledek je integrál racionální funkce:

který můžeme řešit pomocí rozkladu na parciální zlomky.
Odkazy
Reference
V tomto článku byl použit překlad textu z článku Integration using Euler's formula na anglické Wikipedii.
Související články
- Trigonometrická substituce
- Weierstrassova substituce
- Eulerova substituce
Zdroj
Poslední aktualizace obsahu: 2024-10-10 02:31:07
Zdroj: Wikipedia (autoři článku Integrace použitím Eulerova vzorce)
Licence textu: CC-BY-SA-3.0 Unported
Tento článek byl automaticky přejat z Wikipedie. Na obrázcích nebyly provedeny žádné změny. Obrázky se zobrazují ve zmenšené velikosti (jako miniatury). Kliknutím na obrázek získáte další informace o autorovi a licenci. Byly změněny prvky designu, odstraněny některé odkazy specifické pro Wikipedii (např. odkazy na Editaci a nebo na neexistující hesla) a provedena optimalizace pro rychlé načítání.