Paprskovou rovnici je možno odvodit z eikonálové rovnice, případně z Fermatova principu. Tato rovnice popisuje šíření paprsku v prostředí s proměnným indexem lomu. Její tvar je
,
kde
je přirozenou parametrizací trajektorie, tedy parametrizace obloukem.
Provedením derivace součinu je možno rovnici přepsat na tvar
Z diferenciální geometrie je přitom známo, že
je vždy kolmá na
(tedy na směr paprsku) a její velikost se rovná křivosti křivky,
.
Paprsková rovnice tedy umožňuje ze směru paprsku v určitém bodě určit jeho poloměr křivosti R v tomto bodě a také rovinu, ve které je paprsek zakřiven (oskulační rovinu).
Máme-li tedy zadán směr paprsku
v jednom bodě v prostoru, jsme schopni z paprskové rovnice vypočítat, jak se bude paprsek dál šířit, případně i jak se šířil předtím, než do tohoto místa doletěl.
Příklady
Speciálně je-li
, dostáváme nulovou křivost v každém bodě, což odpovídá přímočarému šíření světla v homogenním izotropním prostředí, paprsky jsou přímky.
Závisí-li index lomu pouze na souřadnici y, pak z paprskové rovnice je okamžitě vidět, že pro paprsek pohybující se v rovině x, y platí
Což lze přepsat pomocí úhlu
, který paprsek svírá s osou y do tvaru
Z čehož speciálně plyne Snellův zákon lomu:
Zdroj
Poslední aktualizace obsahu: 2024-07-11 19:00:05
Zdroj: Wikipedia (autoři článku Paprsková rovnice)
Licence textu: CC-BY-SA-3.0 Unported
Tento článek byl automaticky přejat z Wikipedie. Na obrázcích nebyly provedeny žádné změny. Obrázky se zobrazují ve zmenšené velikosti (jako miniatury). Kliknutím na obrázek získáte další informace o autorovi a licenci. Byly změněny prvky designu, odstraněny některé odkazy specifické pro Wikipedii (např. odkazy na Editaci a nebo na neexistující hesla) a provedena optimalizace pro rychlé načítání.