Kaolin - pevná látka patřící mezi nevodiče elektrického proudu (izolanty)
Fyzikální veličiny charakterizující vodivostní či odporové vlastnosti látek, které vedou elektrický proud, jsou konduktivita (měrná vodivost) a rezistivita (měrný elektrický odpor, specifický elektrický odpor). Rezistivita je převrácená hodnota konduktivity. Čím větší je rezistivita, tím menší je lokální elektrická vodivost dané látky a tím větší je lokální elektrický odpor. Jde o materiálové konstanty, které kvantitativně charakterizují danou látku a jsou v určitém smyslu považovány za neměnné.
Podle schopnosti vést elektrický proud se pevné látky dělí na vodiče, polovodiče a izolanty:
Elektrický vodič je pevná látka, nejčastěji z kovu, kde je elektrický proud přenášen volnými elektrony. Velikost elektrického proudu je dána rezistivitou a u kovů se pohybuje mezi 10−6 a 10−8 Ωm.
Polovodič je pevná látka, kde je elektrický proud přenášen volnými elektrony a kladnými dírami. Jejich počet lze ovlivňovat vnějšími nebo vnitřními podmínkami. Změnu vnějších podmínek lze zajistit dodáním energie - nejčastěji tepelné, elektrické nebo světelné. Změnu vnitřních podmínek představuje například příměs jiného prvku v polovodiči.
Elektrický izolant (nevodič) je pevná látka, která neobsahuje volné částice s elektrickým nábojem nebo je obsahuje v zanedbatelném množství, proto nevede elektrický proud. Za izolanty se považují látky, jejichž rezistivita je řádově 106krát vyšší než u vodičů. Izolant, pokud je vložen mezi dva vodiče s rozdílným elektrickým potenciálem, může zamezit průtoku elektrického proudu mezi nimi.
Teorie
Elektrony kovů (metal), polovodičů (semiconductor) a izolantů (insulator) zaplňující energetické pásy (filled band). Je vidět rozdíl mezi velikostí zakázaného pásu (bandgap), který u kovů prakticky není a u izolantů je naopak velký.
Vysvětlení, proč pevné krystalické látky vedou elektrický proud různým způsobem a proč je dělíme na vodiče, polovodiče a izolanty, lze nalézt v jejich struktuře:
Rozdíl v energetické pásové struktuře kovů, polovodičů a izolátorů. Červeně valenční pás (valence band), bíle zakázaný pás (band gap) a modře vodivostní pás (conduction band). Šedě překrytí (overlap) pásů u kovů.Platí, že valenční elektrony v atomu se pohybují po určitých energetických hladinách. Pokud jsou tyto atomy součástí pevné krystalické látky sdružují se tyto energetické hladiny do energetických pásů.
Pásy vytvářejí pásovou strukturu pevných krystalických látek a dělí se na valenční (valence bond), zakázaný (band gap) a vodivostní pás (conduction band). Elektrony v krystalu postupně zaplňují dovolené pásy a zakázaný pás zůstává prázdný, jak je vidět na prvním obrázku.
Elektrony ve valenčním pásu se podílejí na vazbě atomu s jinými atomy. Elektrony v pásu vodivostním jsou z vazeb uvolněné a mohou se jím volně pohybovat. Mají větší energii než elektrony v pásu valenčním, neboť je zvětšená o práci, kterou je nutné elektronům dodat na rozbití vazby.
Pohyb elektronů obrovskými rychlostmi v povolených energetických pásech krystalu je chaotický a všemi směry. Průchod elektrického proudu (přenos náboje) je možný pouze tehdy, pokud vnější elektrické pole udělí elektronům dodatečnou rychlost v jednom směru.
Schéma jednotlivých pásů znázorněné na obrázku je typické pro většinu pevných krystalických látek. Pro jednotlivé látky se však podstatně liší šířkou zakázaného pásu a obsazením jednotlivých pásů.
Podle příslušnosti dané energetické hladiny do určitého pásu a podle zaplnění pásu lze definovat vodiče (kovy), polovodiče a izolanty. Zároveň je těmito pásy určena schopnost dané látky vést elektrický proud.
Kovy mají nejvyšší schopnost vést elektrický proud, neboť jejich valenční a vodivostní pás se překrývají (overlap). Chybí zde zakázaný pás nebo je velmi úzký.
Polovodiče mají nižší schopnost vést elektrický proud, neboť jejich valenční elektrony musejí překonat zakázaný pás dodáním energie, aby se dostaly do vodivostního pásu.
Izolanty nemají schopnost vést elektrický proud, neboť jejich valenční elektrony nemohou překonat velmi široký zakázaný pás a dostat se do vodivostního pásu.
Vodiče - kovy
Měď patří mezi nejlepší vodiče elektrického proudu
U velmi dobrých vodičů se jejich vodivostní pás a valenční pás překrývají. Vodivostní pás je často obsazen z jedné poloviny, aby měl elektron po uvolnění z vazby kam přejít.
U horších vodičů jsou povolené pásy odděleny pouze úzkým zakázaným pásmem. Vzhledem k malé šířce zakázaného pásu pak stačí nepatrný vliv elektrického pole k tomu, aby se některé elektrony dostaly z pásu valenčního do vodivostního. Tedy získaly energii nutnou na překonání zakázaného pásu a začaly se usměrněně pohybovat ve vodivostním pásu.
Vysvětlení dobré vodivosti kovů lze nalézt v jejich krystalické struktuře. Ta je tvořená krystalovou mřížkou, která se skládá z pozitivně nabitého atomového jádra (uzlový bod), kolem kterého se volně pohybují elektrony a cestují mřížkou. Taková mřížka se nazývá pozitivní iontová mřížka a umožňuje kovům dobře vést elektrický proud.
S rostoucí teplotou se u vodičů zvyšuje odpor a snižuje vodivost. Je to dáno tím, že se rozkmitají uzlové body a překážejí průchodu elektronů. Nejlepšími vodiči jsou stříbro, měď nebo hliník.
Polovodiče mají valenční pás zcela zaplněn a vodivostní pás je zcela prázdný. S rostoucí teplotou některé elektrony přeskočí do vodivostního pásu. Tímto přechodem se elektron uvolní z vazby a začíná se pohybovat krystalem. Po elektronu zůstane prázdné místo - kladná díra. Ta může být zaplněna jiným volným elektronem, a tak krystalem putují nejen volné elektrony ale také díry.
V polovodičích pak nazýváme pohyb elektronů elektronovou vodivostí a pohyb děr děrovou vodivostí. Směr pohybu kladných děr je opačný ke směru pohybu elektronů, ale celkový elektrický proud v polovodiči se rovná součtu proudu způsobeného volnými elektrony a proudu způsobeného kladnými děrami.
Počet volných elektronů a děr lze ovlivňovat vnějšími nebo vnitřními podmínkami. Změnu vnějších podmínek lze zajistit dodáním energie - nejčastěji tepelné, elektrické nebo světelné. Změnu vnitřních podmínek představuje například příměs jiného prvku v polovodiči. Legováním příměsemi lze změnit elektrickou vodivost polovodičů o mnoho řádů.
S rostoucí teplotou se u polovodičů snižuje odpor a zvyšuje vodivost. Je to dáno tím, že se s rostoucí teplotou zvyšuje počet elektronů a děr, schopných vést elektrický proud. Jako polovodiče se obvykle chovají polokovy ze 3. až 5. skupiny periodické tabulky, například bor, křemík nebo germanium.
Nevodiče - izolanty
Keramické izolanty na drátech elektrického vedení
Izolanty nevedou elektrický proud, protože se v nich nevyskytují volné částice s elektrickým nábojem nebo se vyskytují v zanedbatelném množství. Ionizační energie izolantů je relativně vysoká. Za izolanty se považují látky, jejichž rezistivita je řádově 106 krát vyšší než u vodičů.
Supravodiče jsou materiály, jejichž elektrický odpor se stává nulovým, pokud teplota klesne pod kritickou teplotu (TC) a kdy nedochází ke ztrátě žádné energie přeměnou na Jouleovo teplo. Supravodiči se stávají některé kovy při velmi nízkých teplotách (cca pod 20 K, -253 °C). To omezuje její použití na relativně malý počet aplikací, protože chlazení vyžaduje kapalné helium a celý proces chlazení je velmi složitý a nákladný. Nejvyšší kritickou teplotu při atmosférickém tlaku má mezi kovovými supravodiči diborid hořečnatý (39 K).
V supravodičích proud přenášejí Cooperovy páry, což jsou dvojice elektronů s opačným spinem. Přenos náboje je tak kvalitativně jiný než v případě samostatných volných elektronů a elektrický odpor je pak nulový.
Nositeli náboje mohou být i ionty, to platí v superiontových vodičích. Může se jednat například o protony (kladné ionty vodíku) nebo o ionty O+. Superiontové vodiče se používají například jako polopropustné membrány nebo v palivových článcích.
Tento článek byl automaticky přejat z Wikipedie. Na obrázcích nebyly provedeny žádné změny. Obrázky se zobrazují ve zmenšené velikosti (jako miniatury). Kliknutím na obrázek získáte další informace o autorovi a licenci. Byly změněny prvky designu, odstraněny některé odkazy specifické pro Wikipedii (např. odkazy na Editaci a nebo na neexistující hesla) a provedena optimalizace pro rychlé načítání.